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By the use of recursion relations and analytic techniques we deduce general 
analytic results pertaining to the electrostatic potential, moments, and Fourier 
transform of exactly self-similar fractal and multifractal charge distributions. 
Three specific examples are given: the binomial distribution on the middle-third 
Cantor set, which is a multifractal distribution, the uniform distribution on the 
Menger sponge, which illustrates the added complication of higher dimen- 
sionality, and the uniform distribution on the yon Koch snowflake, which 
illustrates the effect of rotations in the defining transformations. 
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theory; Mellin and Fourier transforms. 

1. I N T R O D U C T I O N  

There are a number of interrelated physical systems which involve 
Laplace's equation with fractal boundary conditions. These include gravita- 
tionally interacting structures such as the distribution of galaxies (1) and 
Saturn's rings~2); the electrodynamic processes which generate diffusion- 
limited aggregates(3); the eigenmodes of a fractal drumt4); and diffraction 
from random (5"6) and deterministic (7,g) fractal objects. The scale invariance 
of fractals and their diffraction patterns has recently been used to design 
wide-bandwidth acoustical diffusors. (9) 

For the case of the galaxy distribution, as well as that of diffusion- 
limited aggregation, the distribution of mass (respectively, charge) is not 
uniform over its fractal support set. Rather, it exhibits different scaling 
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exponents at different points on the fractal, and as such is called a 
multifractal distribution. An introduction to multifractal formalisms is 
found in Chapter 17 of ref. 10. 

One problem that arises in these systems is to calculate the electro- 
static potential from a given fractal or multifractal charge distribution. 
While mathematicians have studied the general structure of the potential 
about singular points, (m there has been very little detailed analytical work 
with application to specific fractals. Bessis et al. (12~ investigated the Mellin 
transform and various other analytic properties of Julia sets, fractals 
generated by a single nonlinear transformation on the complex field. The 
Mellin transform was found to contain a semi-infinite array of poles. From 
the residues of these poles, power series expansions for the potential near 
points on the fractal may be generated, although they did not do this 
explicitly. These results need to be generalized, since many important 
fractals are of higher dimension than that of Julia sets (two), and/or 
require more than one transformation to represent them. Here, we use only 
similarity transformations, but place no restrictions on the embedding 
dimension E or the number of transformations N. 

In our earlier paper (13) we used Mellin transforms to evaluate a power 
series expansion for the potential near the end of a uniform distribution of 
charge on the middle-third Cantor set. It was found that, in addition to the 
tin 2/ln 3--1 behavior, there are oscillations in the logarithm of the distance 
from the fractal, resulting from a vertical infinite sequence of poles in the 
Mellin transform. In addition, we investigated the asymptotic behavior of 
the moments of this distribution, finding oscillatory behavior which could 
be related to the oscillations in the potential. 

In Section 2 of this paper we generalize the method to include all 
self-similar multifractal distributions, a subset of which are the uniform 
distributions on self-similar fractals. Explicit calculations are then given 
for the binomial distribution on the Cantor set (Section 3), the uniform 
distribution on the Menger sponge (Section 4), and the uniform distribu- 
tion on the yon Koch snowflake (Section 5). These specific examples permit 
the calculations to be carried out to a greater degree than the  general case 
of Section 2, and also allow the effects of the multifractal structure, higher 
dimensionality, and the presence of rotations in the defining transforma- 
tions to be investigated separately. 

Also included in each section is an analysis of the Fourier transform 
of the distribution, of much relevance to diffraction problems, but also of 
interest in its own right. The Fourier transform of the Cantor set has been 
known for some time. (~4~ Allain and Cloitre (7) used convolution techniques 
to extend this to self-similar fractals without rotations, investigating the 
conditions under which the Fourier transform approaches zero, as k ~ oo. 
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We extend the treatment to multifractal distributions, and allow for 
rotations, and make some progress regarding the convergence of the 
Fourier transform as k ~ ov for a distribution defined using rotations. 

2. G E N E R A L  T H E O R Y  

A large class of fractals have the property that they are exactly 
self-similar, that is, they may be split into N parts, each of which is a 
contracted, rotated, and/or reflected version of the original. For a fractal 
set F this is written 

N 
F= 0 (2.1) 

F~ = S~F (2.2) 

The similarity transformation S~ may be written as the combination of 
an isotropic dilation factor 0 < ca < 1, a unitary rotation/reflection matrix 
Us, and a translation by a constant vector t~, all in an E-dimensional 
Euclidean space R e . It is sometimes convenient to treat the linear part of 
the transformation, denoted by L~, separately: 

S~x = ca U~x + t~ = L~x + t~ (2.3) 

There are several definitions of the dimension of a fractal. For a 
self-similar fractal with the F~ nonoverlapping, the Hausdorff and 
box-counting dimensions ~t~ are both given by the solution of 

N 
E co,dim---- 1 (2.4) 

For the case of uniform distributions (defined below), this value appears 
repeatedly throughout the calculations. On the other hand, if the distribu- 
tion is multifractal (see Section 3) there are several effective dimensions, 
depending on the quantity to be measured, the point on the fractal, and 
so on. 

On our fractal set F we now place a charge distribution p(x). Like the 
Dirac distribution, this is singular at points of F and zero elsewhere; 
however, integrals of p(x) over any region are finite. The self-similarity of 
the fractal appears in the definition of p(x) in a natural way: 

N 
p ( x ) =  ~ 2~p(S~-lx) (2.5) 
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with normalization 

f ~  p ( x ) d E x = l  (2.6) 

The weighting factors 2, determine the total charge on each of the subsets 
F~. For the distributions considered here the 2, are constant, although 
generally they are functions of x. In this case the normalization condition 
above is equivalent to 

N 
Z 2~c~ = 1 (2.7) 

a = l  

A uniform distribution, where identical regions of the fractal have the same 
charge, is characterized by 

/~ C~ E 

N (2.8) 

The electrostatic potential around the fractal in fl + 2 dimensions is 
given as 

S p(x') d~x ' 
V~(x)= - ~  i x _ x , i  ~ , f l :~o (2.9) 

Note that although the integration is carried over E dimensions, x is an 
element of a higher (fl + 2)-dimensional space. The recursion relation (2.5) 
gives 

If f l=0  
potential is 

N 
Vfl (X)  ---- E E--fl  --1 2~c~ V~(S~ x) (2.10) 

(two-dimensional space), the appropriate expression for the 

Vo(x) = - f _  ~ p(x') In Ix - x'l dEx ' (2.11) 

which readily yields the recursion relation 

N 

Vo(x ) = ~. )~c~(Vo(S21x)-ln c~) (2.12) 

The Fourier transform of the distribution is defined by 

f \  (2.13) 
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Using Eq. (2.5) gives 

N 
fi(k)= ~ 2~cffeik"fi(L~k) (2.14) 

a = l  

where the dagger indicates Hermitian conjugate, and is simply the trans- 
pose of L~, since the L~ are real matrices. If all of the L~ are the same, 
as for the Cantor set and Menger sponge, the above, the above recursion 
relation may be iterated to give an infinite product representation for fi(k), 

The moments of the distribution are defined in the usual way, 

P{aj} =~: p(x) x 2 dex (2.16) 

Substituting this into the recursion relation (2.5) gives a recursion relation 
for the moments, which are usually better to calculate individually for each 
p(x). If the S~ contain no rotations, as in Sections 3 and 4, the P<aj} can be 
calculated iteratively, beginning with small of the aj. The presence of 
rotations "mixes" the equations, so that the P{m} with Zj=,  aj=n are 
determined in terms of each other, as well as lower values of the aj. This 
is illustrated by the Koch snowflake in Section 5. 

Expanding the exponential in Eq. (2.13) in a Taylor series gives an 
expression for the moments in terms of the Fourier transform, 

(__/)'Y:'s=l j .  E a. I I  k = 0  
/ 0 \aj 

p{aj} 
j : l  

Expanding the integrand of Eq. (2.9) or Eq. (2.11) in a Taylor series 
gives an expansion for the potential which converges far from the fractal, 
in terms of the moments. At points close to the fractal the recursion 
relations (2.10), (2.12) may be used to find the potential in terms of itself 
evaluated at points at which the expansion is convergent. 

This concludes the general remarks about self-similar fractals. The rest 
of this paper consists of specific examples, where the deeper structure of the 
above expressions is more evident, and the effects of various properties of 
the distributions may be examined separately. 
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3. B I N O M I A L  C A N T O R  D I S T R I B U T I O N  

3.1. De f in i t ion  

The "middle-third Cantor set" is defined by an iterative process. Start 
with a line segment, which we specify as ( - 1/2, 1/2) on the x-axis. Remove 
the middle third, to leave two segments, each one-third of the original 
length. Repeat this process with each of the two segments obtained, and so 
on. The result is shown on the bottom line of Fig. 1. 

The Cantor set is self-similar in the sense defined in Section 2, that is, 
it is equivalent to two reduced copies of itself, with the transformations 
defined as 

x - 1  
Sl(x)  = 3 (3.1) 

x + l  
S2(x) = 3 (3.2) 

The binomial distribution on the Cantor set is the distribution for 
which (a) both copies of the set have charge distributions which are scaled- 
down versions of the whole, and (b) the right half of the set has total 
charge p, while the left half has 1 - p .  This distribution Cp(x) is depicted 
schematically in Fig. 2 for the case p = 2/3. The recursion relation for 
Cp(x), which can easily be obtained from Eqs. (2.5), 2.7), is 

Cp(x) = 3[(1 - p) Cp(3X -I- 1) -t- pCp(3X - 1)3 (3.3) 

The restriction p t> 1/2 may be made without loss of generality, since 
replacing p by 1 - p  simply reflects the distribution across x = 0. 

Fig. 1. The construction of the Cantor set. The ends of the line segment shown are taken to 
have coordinates (-1/2, 0) and (1/2, 0). 
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,11'1 II I 
Fig. 2. A representation of the binomial distribution on the Cantor set, for p = 2/3. The 

length of each line is proportional to the amount of charge on part of the Cantor set. 

In the case p = 1/2, Cp(x) reduces to the uniform case treated in our 
earlier paper(13); many of the results of that paper are obtained as a special 
case of the results presented here. I f p  is equal to 1 (or 0), the distribution 

i s  concentrated at 1/2 (respectively, - 1 / 2 )  and reduces to a shifted Dirac 
distribution. 

For  other values of p the distribution is multifractal, meaning that 
effective dimensions (there are several possible definitions) differ from point 
to point on the fractal. This is shown explicitly here for the effective 
dimension defined using the power law of the potential. Chapter 17 of 
ref. 10 gives an introductory explanation of multifractals, with the binomial 
Cantor distribution as the main example. It also defines the multifractal 
spectrumf(~),  which is an important aspect of this subject, but not one we 
will have need of in our calculations. 

3.2. Potent ia l  

The electrostatic potential from the binomial Cantor distribution in 
three dimensions is given by Eq. (2.9), 

~ G(x') dx' 
Vp(X, y )  ~--- J_~  [ ( x _  x,)2 + y211/2 (3.4) 
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The generalization of this to nonzero values of z is trivial. Expanding the 
integrand in a Taylor series about x ' = 0  gives an expression which 
converges for large x and/or y, 

V p ( X ,  y) : n~,O= CP;,n! Ox'"~n [-(x-- x,)lz + y211/2 x'=O (3.5) 

Here, Cp;, are the moments of the distribution, defined by 

S Cp; n = C p ( x )  x n d x  (3 .6)  
-(3,0 

These are evaluated and discussed in the next subsection. 
Vp also satisfies the recursion relation (2.10), 

Vp(x,y)=3pVp(3x-l, 3y)+3(1-p)Vp(3x+l,  3y) (3.7) 

We will not do a complete analysis of the potential here; we are most 
interested in its behavior near the fractal, and in particular how the dimen- 
sionality of the distribution appears in the form of power laws. First we 
consider the potential along the line x =  1/2, for small y. This corresponds 
to a line coming vertically down to the right-hand endpoint of the fractal. 
Equation (3.7) gives 

Vp(1/2, y) = 3pVp(1/2, 3y) + 3(1 - p) Vp(5/2, 3y) (3.8) 

The first term in this expression corresponds to a point which is still near 
the fractal, so the recursion relation is used iteratively to obtain 

(~ ) (3.9) vv =j p 

Note that this series does converge, since the potential approaches zero at 
large distances. Equation (3.5) is now substituted to obtain 

(1) , ,  Vp ~ , y  = ~ (3p)J+ 1 ~ Cp;~ 
- - ~  n! Ox 'n j=O n=O 

1 1/2 (3.10) x [(5/2_x,)2+(3J+ly)2 ] x'=O 

The power law (or logarithmic) dependence of this expression on y is 
best obtained using Mellin transform technique. ~15) The argument of the 
derivative is written as the inverse Mellin of its Mellin transform, using y2 
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as the Mellin variable. Care must be taken with the sign of the ( 5 / 2 - x ' )  
term. Then the derivative is performed, and also the sum over j, which 
becomes a geometric series. The result is 

Vp ' Y = P ,,=o lz! 2rci 

fc " + i~x~ 1 X _ioo dslYl-2"32s-1/p--1 
F(s)F(1/2- -s )  F ( 2 s ) / / 5 ~  2 . . . .  1 

x r(1/2)  r ( 2 s - n )  ~2) (3.11) 

where 

~ (  In p'~ 1 
1 + ] - ~ )  < c <  5 (3.12) 

Note that the potential is an even value of y, hence the absolute value 
signs. The integral is evaluated by closing the contour to the left and using 
Cauchy's theorem. The leading term (smallest power of ]Yl) comes from 
the denominator, which has a line of poles of residue 1/(2 In 3) at 

1 ( lnp 2~im'~ 
1 +i 3+7d3-) (3.13) 

In addition, the gamma function F(z) has a pole of residue ( - l )q /q !  at 
z = - q  for all nonnegative integers q. This gives a power series in even 
powers of y. The result is 

Vp 'Y = 2 p i n 3 , = 0  . . . .  n! ' LYl-2"m 

F(sm) F(l/2--Sm)I'(2s~)(5) 2~m-~-1 
• F(1/2) F(2sm - n) 

1--p ~ ~ (-1)q(2q+n)[Cp.n + 
P ,=o q=o q! (2q)!n! 

[yl2q F(q+ l/2) (~)-2q-n-1 
• 3 - 2 q - ' / p -  1 F(1/2) (3.14) 

The first series gives a power law corresponding to a dimension of 
- I n  p/In 3, which reduces to the dimension of the fractal in the case of a 
uniform distribution (p = 1/2). Since the point at x = 1/2 has the greatest 
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charge "density," this corresponds to the largest dimension associated with 
this multifractal distribution. The terms corresponding to nonzero m result 
in oscillations in the logarithm of ly[, as for the uniform case. (13) The coef- 
ficients of these terms decrease exponentially with Im[, due to the gamma 
functions of complex argument. It can be shown using the results of the 
next section that the second series converges for ly[ ~< 2 for all 0 < p < 1. 

If the contour is closed to the right, the large-y expansion is obtained. 
The result, which agrees with a more direct evaluation of Eq. (3.5), is 

( 1 )  ~ ~ (-1)n+q(2q),Cp.,,l-'(q+l/2) 
Vp ~, y = lYl 1--2q 

q=O ,=o q! n! ( 2 q -  n)! F(1/2) 

X 32 q _ P 

1 p 2 - 3 p + 2  

[Yl 41yl 3 

+ 9p 4 - 198p 3 + 993p 2 - 1584p + 780 ~- .. .  (3.15) 
2080 [yl 5 

The potential near the opposite end of the fractal, at ( -1 /2 ,  y), may 
be obtained by replacing p by 1 - p in the above analysis. The result is an 
effective dimension of - l n ( 1 - p ) / l n 3  at this point, which is thus the 
smallest effective dimension of this distribution. 

The other point we consider is x = 1/4. This is the point obtained by 
choosing first the right segment of the fractal, then the left subsegment, 
then the right subsubsegment, ad infinitum. The recursion relation (3.7) 
gives 

V 1 I 

7 V 1 9,)+3,, ,, 9,)3 

j = 0  

+ P Vp( - 7  )] (3.16) 
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This expression is manipulated in exactly the same manner as Eq. (3.9) to 
obtain 

(~ ) 1 ~  ~ cp;. r(sm) r(1/2-Sm)V(2Sm) 
Vp 3' 4 In-3 ,=o . . . . .  ~ Lyi 2s~ ' = / '(1/2) V(Zsm-- n) 

x ( ~ )  2 . . . .  1 [32s,,,+ ( _  1)n ] 

+ ~ ~ (-1)q+~(2q+n)!CP;n 
n = 0  q=O q! (2q)! n! 

lyl 2q V(q+ 1/2) 
x 

3-4q-2/p(l - - p ) - -  1 F(1/2) 

(4) 2q X [-3-2q-1-(--1) n] 

( 27~im) 
1 In p(1 --p) t- 2-fn-3n 3 Sm=5 1+ 21n3 

(3.17) 

(3.18) 

Thus the effective dimension at this point out to In p(1 - p)/(2 In 3), which 
is just the arithmetic mean of that of the two endpoints. The second series 
converges for l yl ~< 5/4. This procedure generalizes to any rational point on 
the Cantor set, that is, any point which is transformed to points which are 
mapped onto themselves after a finite number of transformations. 

It is also possible to calculate the potential near the ends of the fractal, 
but along the x axis. The recursion relation (3.7) gives 

50) Vp(x+~,O)=3pVp(3x+~,O)+3(1-p) Vp(3x+~, 

_ l - p  ~ (3p)J+~V p(3j+~x + 5 , 0 )  
P j=o 

(3.19) 

Substituting Eq. (3.5) and performing the multiple derivative gives 

( , - , i  i v,  x + 5 , 0  = (3,o) j+l  (3J+1x+5/2) .+ l  
P j=o ~=o 

which is then Mellin transformed with respect to x, and the contour 
integral performed by closing to the left to obtain the small-x expansion, 
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p x + ~ , O  ln3  p ,=o n---~" m = - ~  

x F ( n +  1 --Sm) X -'m 

1 - p  ~ ~ (-1)q(n+q)! 
+ Cp;~ n! q! 

P n=O q=0 
(~)n+q+l xq 

• 3 - q - l i p  - 1 

In p 2z~irn 
Sm = 1 + ~n-~-~- ln---~ 

(3.21) 

(3.22) 

Note that the effective dimension - l n  p/ln 3 is the same as the previous 
case [-Eq. (3.14)], as is the constant term (coefficient of x~ The second 
series converges for x ~< 2. Closing the contour to the right generates the 
large-x expansion, 

( ) ~  ~ , , ( ; ) q - - n  q! 1--p 
1 0 = x l - q  _ 

Vp x + ~ ,  n! ( q - n ) !  3 q - p  q=O n=O 
1 1 - p  2 - 3 p + p  2 2 6 - - 4 7 p + 2 4 p 2 - 3 p  3 

- F x x 2 2x 3 26x 4 

260 -- 528p + 331p 2 - 66p 3 + 3p 4 
+ t - . . .  

260x 5 
(3.23) 

3.3.  M o m e n t s  

Now we consider the moments of the distribution, the Cp; n defined by 
Eq. (3.6). Substituting the recursion relation (3.3) into this definition and 
using the binomial theorem yields a recursion relation for the moments: 

Ce;,=3---- ~ ~ Ce;j [ p + ( 1 - - p ) ( - - 1 )  ~-:]  (3.24) 
j=O J 

The Cp; n are polynomials in p with rational coefficients. The first few are 
tabulated in Table I. They rapidly become more complicated, and it is 
difficult to see what the behavior is as n--* oe. Unlike the uniform case, 
there are now both even and odd moments, and it is interesting to consider 
the limit p --. 1/2, where all the odd moments vanish. In general, 

Cl-p;n= ( - 1 )  n ~p;n (3.25) 
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Table I. Moments  of the Binomial Cantor Distr ibution 

253 

n Cp;. 

1 
(2p - 1)/2 

(2p 2 - 2p + 1 )/4 

(12p 3 - 18p 2 + 32p - 13)/104 

(12p 4 - 24p 3 + 184p 2 - 172p + 65)/1040 

(24p 5 - 60p 4 + 27121o 3 -4008]92 + 4478p - 1573)/50336 

(72p 6 - 216p 5 + 68484p 4 - 136608p 3 + 496670p 2 - 428402p + 143143)/9161152 

We now proceed to find the large-n limit of the Cp;n, beginning with 
the ansatz 

Cp;. = an[F(n) + ( -  l)  n G(n)] (3.26) 

This ansatz is a natural extension of the p = 1/2 result. (13) The F and G 
functions are assumed to be "slowly varying," 

F'(n) G'(n) - 1 / 2  
F(n) '  ~ ~ n  (3.27) 

At all times during this calculation we omit terms which are a factor 
1In smaller than the dominant terms. Thus Stirling's formula, which is used 
to simplify the binomial coefficient, is written 

q! = qqe-q( 27rq) '/2 [1 + O(1/q) ] (3.28) 

Note that since the contribution of the endpoints of the sum in Eq. (3.24) 
is negligible due to the binomial coefficient, irrespective of the value of a, 
both j and n - j  are of order n, so the use of Stirling's formula for their 
factorials is valid. Thus the summand of Eq. (3.24) may be written 

I a y I n n - 1/2 

yY(1 -- y ) l -  y [27ty(1 -- y ) ]  1/2 EpF(yn) 

+ ( - 1 ) "  ( l - p )  G(yn)] (3.29) 

where 

j = yn (3.30) 
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Here, the alternating sign given by ( - 1 ) J  has already been averaged over. 
The terms which contribute to the sum are around 

a (3.31) Ymax- 1 + a 

and are of order ~ in number; thus all terms which do not have n as the 
exponent are effectively constant over this range. The sum is written as an 
integral, with the Euler-Maclaurin corrections being of order 1/n. The 
result is 

1 F/-- 1/2 

Cp;,, = ~-~ [2zcYmax( 1 _ Ymax)]U 2 [pF(yn) + (-- 1)n (1 -- p) G(yn)] 

x ndy yY (1 -y )a -Y  (3.32) 

The integral is evaluated using the method of steepest descents; that is, the 
integrand is written as an exponential, the argument of which is expanded 
in a Taylor series about  its maximum, to give 

Ion dy exp {n 7} ln(a + 1) ( a +  1)2 2 ~  ( y -  Ymax)2 -'}- " ' "  (3.33) 

Because the factor of n in the exponential is so large, the above quadratic 
approximation gives an accurate expression for the integral, leading to 

which implies that 

Cp;. = a"[F(n)+ ( - 1 ) "  G(n)] = 1 (1 + a)" 

(3.34) 

a = 1/2 (3.35) 

F(n) = pF(n/3) (3.36) 

G(n) = (1 - p) G(n/3) (3.37) 

The value of a comes from the fact that the distribution ends at x = 1/2. 
The general solution for the equation for F(n) is 

F ( n ) =  ~ f,,,n r (3.38) 
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where 

In p 2rcim (3.39) 
~bm = ~-ff~ + ln3  

and the fm are coefficients which are yet to be determined. This expression 
may also be written as n an p/]n 3 multiplied by a Fourier series in Inn. The 
expression for G(n) follows similarly: 

G(n)= ~ gmn TM (3.40) 
m =  --o~3 

where 

ln(1 - p) 2rcim 
- -  -~ (3.41) 

7m in 3 In 3 

Figures 3 and 4 show numerical plots of the Fourier series for F and 
G, that is, these functions with the power law dependence removed. The 
oscillatory behavior is quite clear, as are the 1/n corrections for small n, 
which are negligible in the large-n limit of the above calculation. 

Now we use an expression for the potential found in the previous sub- 
section and the fact that the potential near the end of the fractal, where the 
series (3.20) is barely convergent, is closely related to the n ~ oe limit of the 
Cp;,,, to find the fm and gm coefficient, is closely related to the n ~ ~ limit 
of the Cp;n, to find the fro and gm coefficients. We begin with Eq. (3.20), set 
y = 0, and perform the multiple derivative, to obtain 

( ' )  
n=o ( x +  1/2) "+1 

(3.42) 

0.517 

0.51675 

0.5165 

0.51625 

I 0.516 

-~  0.51575 

0.5155 

0.51525 

Fig. 3. 

2 4 6 8 10 12 14 

In n 

A plot of F(n)n - lnp / ln3 ,  where F(n) is defined in Eq. (3.26). 

822/72/1-2-17 
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0.434 f '  ' . . . . . . . . . . . . . . . .  i 

~ ^1 - 

I . . . . .  

0 2 4 6 8 10 12 14 

Inn 

Fig. 4. A plot of G(n)n -in(1 p)/ln3, where G(n) is defined in Eq. (3.26). 

This expression is then Mellin transformed with respect to x, and the C p ;  n 

expanded as in Eq. (3.26) to give 

( 1 ) lff+"~176 ~ ~ - -  - -  d s x  s 
Vp x + 2 , 0  - ~ /  -io~ ,=o . . . .  

/1\~ . -1 

F(s) F(n + 1 - s) 
x (3.43) 

F(n + 1) 

where the signs due to odd and even n have been averaged over. Here, 
we are only considering the terms which are divergent in the x-- ,  0 limit, 
thus the terms for small n, and the part  of Cp;, neglected in the previous 
calculation do not contribute. Stirling's formula (3.28) leads to 

F(n + 1 - s ) / r ( n  + 1)= n ~(1 + O(1/n)) (3.44) 

Dropping the n = 0 term, which was just a constant in the original sum, the 
sum over n is now simply 

n o m - s  = ~ ( s  - (~m) (3.45) 
n = l  

where ~(z) is the Reimann zeta function, which has a pole of residue 1 at 
z = 1. Thus, closing the contour to the left, we obtain 

Vp(x+l /2 ,0 )=cons t+  ~ F(sm)fm(1/2)Sm-lx -~m (3.46) 
m=ct3  
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where 

In p 2him (3.47) 
s ~ =  1 + i-n--~ + ln---3- 

This may be compared with Eq. (3.21) to give 

f~  ln3 p ,=o-~. F(n+l-s'') (3.48) 

The corresponding expression for gm is found by replacing p by 1 - p  in 
the above derivation; the Cl_p, ,  give the alternating minus signs [see 
Eq. (3.25)] which single out the g,~ from the original sum. The result is 
exactly the same expression, but with p replaced by 1 -  p. This symmetry 
ensures that in the case p = 1/2 all the odd moments are zero. 

3.4. Four ie r  T r a n s f o r m  

Now we turn to the Fourier transform of the distribution. This is given 
as [Eq. (2.15)3 

Cp(k)= f i  [ ( 1 - p )  e -i3 Jk + pei3-Jk] 
j = l  

= ]~I [cos 3 -Jk + i(2p - 1 ) sin 3 -~k] (3.49) 
j = l  

The product converges for all complex values of k, and is thus a perfectly 
well-behaved analytic function. It gives us a representation for the original 
distribution 

Cp(x )= f  ~176 dk ikx I~i [ cos3 - Jk  i ( 2 p _ l ) s i n 3 - J k ]  ~ e  + 
--oo j = l  

as well as the moments [Eq. (2.17)] 

(3.50) 

~?n Jk] k=o Cp;,, = ( - i ) "  ~-~ I~I Ecos 3 - J k +  i(2p - 1) sin 3 (3.51) 
j = l  

Generally, random fractals are characterized by a noninteger power 
law decline of the power spectrum as k ~ 0% and this property has been 
used to define the concept of Fourier dimension. (16) However, for exactly 
self-similar distributions, this limit does not exist, due to the presence of 
long-range correlations. In the above case, a value of k equal to 3q~ for an 
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arbitrarily large integer q results in the first q terms in the product being 
equal to 1, so that 

C p ( 3 q ~ )  = Cp(7~) (3.52) 

Thus the above expression does not strictly tend to zero for large k. We 
can, however find its "average" behavior by cutting off the product when 
the argument of the trigonometric functions is of order 1, and for the 
remaining terms using the geometric mean of the absolute value of 
cos x + i(2p - 1 ) sin x, 

exp ~ ln[cosZx+(2p-1)2s in2x]mdx  =max(p, l - p )  (3.53) 

so that the power spectrum has the "averaged" law 

[ ~ p ( k ) [  2 ~ k21 . . . .  (p , l  - p)/ln 3 ( 3 . 5 4 )  

For the purposes of the Fourier transform, the effective dimension is thus 
also the smallest dimension ( - I n  p/ln 3) applicable to this distribution. 
In other words, the power spectrum decreases at the slowest rate available 
to it. 

3.5. S U M M A R Y  

The binomial distribution on the Cantor set may be treated in an 
analogous fashion to the uniform case, (13) but shows much additional 
structure. The dimension of the support of the distribution, In 2/ln 3, plays 
no discernible role in the structure of the potential, the moments, or the 
Fourier transform. Rather, the structure of the potential is governed by an 
effective dimension which depends on the point near which the potential 
is measured. This effective dimension varies between - l n  p/ln 3 and 
- l n ( 1 - p ) / l n 3 .  The asymptotic form of the moments has terms corre- 
sponding to each of these endpoints, but no intermediate effective dimension. 
The behavior of the Fourier transform is apparently dominated by only 
the minimum of these two values, although the other value is undoubtably 
hidden in its deeper structure. 

4. THE MENGER SPONGE 

4.1. Definit ion 

The purpose of this section is to investigate the effects of increasing the 
dimension of the space in which the fractal is embedded, while having as 
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little other complication as possible. Thus the distributions considered here 
will be uniform in the sense defined in Section 2 and the transformations do 
not contain any rotations. Probably the simplest three-dimensional fractal 
is the outer product of three Cantor sets. The uniform distribution on this 
set is simply given by 

Cm(x) C,/2(y) Ct/2(z) (4.1) 

The presence of complicated square roots makes the potential difficult to 
calculate in three dimensions; see, for example, the treatment of the von 
Koch snowflake given in the next section. The moments and Fourier trans- 
form of this distribution, however, are readily obtainable from those of the 
uniform Cantor distribution, and thus do not shed much light on the 
properties of more general fractals, which do not separate in this way. It is 
clear that a slightly more complicated example is needed. 

Probably the best-known fractal in three dimensions is the Menger 
sponge. This is closely related to the Cantor set, but not simply the outer 
product of three Cantor sets. It is defined by taking a cube of length 1, and 
centered on the origin, dividing it into 27 smaller cubes, and accepting only 
the 20 of those which contain the edges of the original cube--see Fig. 5. 

Fig. 5. The first step in the construction of the Menger sponge. The large cube has vertices 
at + 1/2. 
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This process is continued for each of the smaller cubes, and so on. The 
result is rather difficult to draw on a computer, and we refer the reader to 
p. 145 of Mandelbrot, (x6) which was in turn copied from an earlier book! 
Mathematically, however, the Menger sponge is quite easy to define. Using 
the results in Section 2, we obtain the dimension of the set (In 20/ln 3) and 
also a recursion relation for the uniform distribution o ,  the Menger 
sponge, M(x, y, z): 

27 
M(x, y, z) = ~--~ [M(X+,  Y+, Z+)+ M(X+, Y+, Z)+ M(X+, Y+, Z_) 

+M(X+, Y,Z+)+M(X+, Y,Z )+M(X+, Y_,Z+) 

+ M ( X + ,  Y ,Z)+M(X+, Y ,  Z )+M(X,Y+,Z+) 

+M(X, Y+,Z )+M(X, Y ,Z+)+M(X, Y_,Z_) 

+M(X , Y + , Z §  , Y + , Z ) + M ( X _ ,  Y + , Z _ )  

+ M(X , Y,Z+)+ M(X_, Y,Z_)+ M(X_, Y_,Z+) 

+M(X , Y ,Z)+M(X_, Y ,Z )] (4.2) 

where 

X + = 3 x + l ,  X = 3 x ,  X = 3 x - 1  

Y+ = 3 y +  1 Y = 3 y  Y_ = 3 y -  1 

Z + = 3 z + l  Z=3z Z _  = 3 z - 1  

(4.3) 

4.2 .  M o m e n t s  

The moment s  Mij k follow the symmetries of the distribution, that is, 
they are totally symmetric in i, j, and k, and are zero if one or more of the 
indices is odd. The above recursion relation for the distribution leads to the 
following expression for the even moments: 

Mijk 5 3 i + j + k _ l  ~ M a b c  (2+6i,,+Sjb+Skc) (4.4) 
a,b,c 

where the sum is over all even values of a, b, and c permitted by the 
binomial coefficients except for the term in which a = i, b = j ,  and c = k, 
and 5,,,, refers to the Kronecker delta, equal to 1 if m = n and zero 
otherwise. Some values of the coefficients are given in Table II. 

The asymptotic properties of the moments for large i, j, and k are 
obtained using a similar procedure to that of the previous section. The •mn 
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Table II. Moments of the Menger Sponge 

M0oo 1 
M0o2 1/10 
Moo4 2/125 
M022 19/2000 

Moo6 137/45500 
mo2 4 1373/910000 
M222 1507/1820000 

only contribute at the endpoints of the sum, and thus are negligible in this 
limit. If the ansatz 

Mu k = ai+ j + kf(i) f ( j )  f ( k )  (4.5) 

is substituted into the above expression, the triple sum separates. Following 
the same procedure as in the previous section, the binomial coefficients are 
simplified using Stirling's formula, the sum is written as an integral, and the 
integral is performed using the method of steepest descents. The result is 

a = 1/2 (4.6) 

f ( n )  = 20-1/3f(n/3) (4.7) 

which leads to an expression of the form 

/ ( n ) =  ~ f , , n  ~" (4.8) 
m =  --oo 

where 

In 20 2rcim 
~bm= - - + - -  (4.9) 

3 In 3 In 3 

Again the 1/2 is due to the size of the fractal, but now there is an extra 
factor of 3 in the ~b,,. It appears likely that this factor is the embedding 
dimension E; however, as the section on the moments of the von Koch 
snowflake shows, the situation is not this simple. The coefficients fm cannot 
be determined at this point by a similar means to those of the binomial 
Cantor distribution, since the potential has not been evaluated. 

4.3. F o u r i e r  T r a n s f o r m  

The Fourier transform of the Menger sponge is given by [Eq. (2.15)] 

M(k x, ky, kz) = I~I �89 (2~/( + ~r/+ r/( + ~ )  (4.10) 
j = l  
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where 

= cos(3 -Jkx) 

r/= cos(3 Jky) 

= cos(3 -Jk~) 

This is quite similar to the Fourier transform of the outer product of three 
Cantor sets, 

C1/2(kx) C1/2(ky) C~/2(k~)= fi Cq~ (4.11) 
j = l  

but has the factor of 5 characteristic of the Menger sponge, while still 
keeping the symmetry between x, y, and z. Like the binomial Cantor 
distribution, it does not tend to zero for large k~, ky, and/or k~. All but a 
small number of terms in the product are close to 1 if kx, ky, and kz are 
all of the form 3q7~ or zero, where q is a positive integer. 

As in the previous section, the approximate form of ~ 2  for large 
arguments may be found by replacing terms in the product by their 
geometric mean; in this case, however, the integrals must be performed 
numerically. Without loss of generality we assume that k x >t ky >~ k z. The 
product then breaks up into several groups of terms, defined as follows: 

1. 3 Jkz>~ t. The geometric mean of the square of the terms in 
Eq. (4.10), 

exp(I3) = exp ~ In (2 cos x cos y cos z 

) + cos x cos y + cos y cos z + cos z cos x dx dy dz 

= 0.00917 +_ 4 • 10 -5 (4.12) 

2. 3-Jk~ ~< 1 and 3 -Jky >/1. Now, one of the cosines is approximately 
one, so that the appropriate expression is 

( 1 1 ~ f 2 = l  { I  ~ 12} ) exp(I2) = exp ~ J0 n (3 cos x cos y + cos x + cos y) dx dy 

=0.0290+__ 1 • 10 -4  (4.13) 
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3. 3 Jky ~< 1 and 3-Jkx ~> 1. With only one of the cosines varying, the 
integral can be obtained analytically as 

/ 1  ~2~ 1 ) 1 2 } d x ) =  4 (4.14) exp(,l)  -- exp ~-~ Jo In { [~  (4 cos x +  

4. 3-Jkx ~< 1. These terms are approximately equal to 1. 

Substituting these expressions into the product, evaluating the number 
of terms corresponding to each case gives 

M(kx, ky, kz) 2 = Z I3/ln 3 yl2/ln 3XIl/ln 3 (4.15) 

where 

Z = max(kz, 1 ) 

Y= max(ky/Z, 1) (4.16) 

X =  max(kx/Y, 1) 

Unlike the one-dimensional case, this expression does not contain the 
dimension of the fractal distribution explicitly. Even the part involving I~ 
is modified 

11 2 ln(20/8) 
In 3 In 3 (4.17) 

with the presence of the 8 somewhat mysterious. 

5. THE V O N  KOCH S N O W F L A K E  

5.1. Def in i t ion 

Finally we consider the yon Koch snowflake, which, in addition to 
being in two dimensions, has transformations which contain rotations. The 
snowflake is constructed by the following iterative procedure: Take an 
equilateral triangle, which we will take to have side length 1, centered on 
the origin, and with its apex on the y axis; replace each side by the con- 
struction shown in Fig. 6, in which each of the new sides has a length 1/3 
of the original; repeat this for each of the 12 sides of the new figure, and 
so on. The result is shown in Fig. 7. Since each part of the fractal consists 
of four copies of itself reduced by a factor 3, the dimension of the fractal 
is In 4/ln 3. 
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Fig. 6. In the construction of the von Koch snowflake, each edge of an equilateral triangle 
is replaced by this figure. Each of the resulting 12 edges is replaced by this figure, ad infinitum. 

There are a number of possible choices for the defining transforma- 
tions for the von Koch snowflake. The most obvious is to split it into three 
sections, each of which is given by four copies of itself. If the snowflake 
must be treated as a whole, it is possible to write the recursion relation for 
the uniform distribution K(x, y) in terms of six copies of itself reduced by 
1/3 minus a single copy rotated by re/6 and reduced by l/w/3. The most 
economical in terms of the number of transformations, however, is to split 
the snowflake into three sections, as above, but use only two transforma- 
tions, noting that the outside of the snowflake is similar to the inside. 

Let the uniform distribution on the upper third of the fractal with 
normalization 1/3 be denoted by k(x, y). The treatment in Section 2 gives 
the relation 

0,6 

0.4 

0.2 

0 

-0.2 

-0.4 

-0.6 
-0.4 -0.2 0 0.2 0.4 

Fig. 7. The von Koch snowflake. The side length of one of the large triangles is 1. Note that 
the inside of the snowflake is similar to the outside. 
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3i( k (x , y )=-~  k - - ~ +  2 ' 2 2 ~- 

The distribution for the entire snowflake is then given by 

K ( x , y ) = k ( x , y ) + k  - ~ - t  2 ' 2 

so that 

(5.1) 

(5.2) 

f~ f ~ K(x, y) dx dy = 1 (5.3) 

5.2. Potent ia l  

The recursion 
distribution in three dimensions (fl = 1) is given by [Eq. (2.10)] 

relation for the potential of the upper third of the 

~ - -  v ---~-4 2 2 + 'x / /3z  

+ v  -~-+ 2 ' 2 2 ~- ' x / 3 z  (5.4) 

This expression is used to evaluate the potential near the fractal in terms 
of its values at a greater distance from the origin. At large distances from 
the fractal the series obtained by expanding Eq. (2.9) in a Taylor series, 

~(x, y, z ) =  ; . , ~ !  ax, ~ ay, o 
m = 0  n = O  

1 z231/2 x' (5.5) x [(x_x, )2+(y_y,)2+ = / = 0  

where kin,  n a r e  the moments of the k(x, y) distribution, defined in the usual 
way by 

k,~,n = k(x, y) xmy" dx dy (5.6) 

The moments are studied more fully in the next subsection. 
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The potential of the full snowflake V(x, y, z) is given in terms of v as 

V ( x ' Y ' Z ) = V ( x ' Y ' Z ) + V ( - 2 +  x/3Y2 ' x / ~ x  Y 2 ' z  

+v 2 2 ' 2 2 ' z  (5.7) 

This potential is plotted in Fig. 8. 
Now we use the Mellin transform technique of Section 3 to investigate 

V(x, y, z) along the y axis above the uppermost point of the fractal at 
(0, x/3/3, 0). A direct application of the relation (5.4) gives 

-S -+y' 

= 3 4 ~  Iv (1 + 3 ~ Y ,  "~/36 27y ) 

2 +  
,/3 

+ ~ v  1, ~ +  3Jy (5.8) 

From this point the analysis is similar to that of Section 3; Eq. (5.5) is 
substituted for v and the expression involving y is written as the inverse 
Mellin transform of its Mellin transform, specifically, 

j=l m=O ,,~o m! n! Ox' '  ~Y ' '  2rti 

x - ~  ds y ~ sin ~----~ 3 - j -  1/2(3 - j -  mC)~-  1 p , _  1 

+ - -  3-J (3 -J C)S- 1Ps- l w / 3  C x' =y'=o 

where 
0 < c < l  

A = l - x '  
B = 2/`/3 - y' (5.10) 

C = (A 2 + B2) m 
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Fig. 8. The potential of the von Koch snowflake, defined using Eq. (2.9) with fl = 1. 

and the P,_~(z) are Legendre functions of the first kind, reducing to 
Legendre polynomials for the case s an integer, but not for the case of 
interest at s = sk (see below). As for the binomial Cantor distribution, the 
sum over j is a geometric series, leading to poles at 

In 4 2zrik 
sk= 1 - i - ~ +  In 3 (5.11) 

for all integers k. The sin Ks in the denominator generates poles for all 
integers s. Closing the contour to the left thus gives an expression including 
a series of terms of the form y~" 4/~n 3-1 multiplied by oscillatory terms, plus 
a power series in y beginning with a constant. It thus has the same form 
as the potential from the Cantor set, although the coefficients are more 
difficult to calculate. The full potential V also contains contributions from 
the other two-thirds of the snowflake. The contributions due to each third 
are equal, and given by [see Eqs. (5.5), (5.7)] 

v ~-t 2 ' 6 2 ' 0  

. ,=o  ~=o ~ n V  ~x 'm ~y'~ 

1 i/2 x ' ~  v' 
x (5.12) 

[(1/2 + x/3y/2-x')2 + ( -x /~ /6-  y/2-  y') z] =o 
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which is then Mellin transformed in the same way as the previous expression. 
The final result for the potential near the uppermost point of the snowflake 
is 

In 3 sin ~sk rn! n! Ox 'm ~y'" k =  - - ~  m = O  n = 0  

2 x{fSk-l[3-Sk/2psk-l(A)"[--~Psk-l(B)]} x'=y'=O 

h-X/3 ~ (__l)qyq ~ km,n om ~n 
3----'~-----~---- 1 re!n! OX '~ @'~ q = 0  n = 0  

2 M{ C-q 1.I3q/2pq(A)DI---~pq(B)]} x,=y,=o 

"~2 ~, (--1)qy q ~ km'n Om ~n 
q = 0  n = 0  m!n[ ~)ftm @,n 

where A, B, C, and sA are defined as previously, and 

3 2 2 

+ + " ) /  
(5.14) 

and the relation 

P q _  I ( Z )  = Pq(z) ( 5 . 1 5 )  

has been used. The first few terms in the above expression for the coef- 
ficients of powers of y were evaluated numerically. With the exception of 
the coefficient of yln4/ln3-1, which converged rapidly to 3.7481, all of 
the series converged quite slowly. As in the case of the binomial Cantor 
distribution, however, the coefficient of yln 4/~n 3 1 - 2~;/~n 3 is of order 10-6, 
showing that the oscillations in in y are again small in this case. 

Closing the contour to the right in Eq. (5.9) gives the large-y expan- 
sion. The Legendre polynomials are finite, cutting off the sum over m and 
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n. Thus the coefficients of powers of 1/y are known combinations of 
rational numbers and .,//3, 

( ~  ) ~-~, ~,~,, kmn~m~n 
V 0 , ~ - + y ,  0 = y q ( - 1 )  q+~ 

q= 1 m =o n =o re!n! Ox 'm Oy'" 

2 ~< ~-~3Cq-I [3 q/2pq_ 1 If)-}- Pq_ 1 (B)]  x 
[3q-14 - 1 

+2Eq 1rq- iQO)}  X ' =  y ' = O  

1 1 7 1 463 
- y  x / /~y2F18y  3 2 x / ~ y ~ + 2 0 1 6 y ~  (5.16) 

5.3. M o m e n t s  

The moments of the upper third of the snowflake k.,.~ and of the entire 
snowflake Km,n are defined in the usual way, 

Ff k,.,,,,, = k(x, y) xmy n dx dy 
--oo --oo 

Kin, n = K(x,  y )  xmy n dx dy --oo -oo 

(5.17) 

(5.18) 

The km, n obey a recursion relation obtained by substituting Eq. (5.1) into 
Eq. (5.17), 

km,.= ~2 
.,~=o m2=o .1=o .2=0 m1! m 2 ! ( m - m  l - r n 2 ) !  

n! / 1 \  m~+m2+nl+'2 

nl ! n z ! ( n _  n l _  n2)! 2 

X ~N~ ] km1+nl,m2+n2 (5.19) 

This is a set of linear equations involving all of the k,~,. up to a particular 
value of m + n. The "mixing" of the recursion formulas in this way is due 
to the rotations in the original transformation. It requires a much larger 
amount of calculation to evaluate these moments than for the case without 
rotations, and it is also much more difficult to determine analytically the 
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asympto t ic  behavior  as m, n ~ ~ .  The  momen t s  for the whole snowflake 
are ob ta ined  by subst i tut ing Eq. (5.2) into Eq. (5.18), 

K~,,=km,,+ ~ ~ [ - ( - 1 )  m+" n ' + ( - - 1 ) ' + m ' ]  
m'=0 n '=0  

)'( ( )m-m' +n' km, +n,,m+n_rn, ~, (5 .20)  

The first few kin, n and K,,,n are tabula ted  in Table  III .  No te  that  the 
symmetr ies  of the distr ibutions impose  certain condit ions on the moments .  
Both k(x, y) and K(x, y) have the y axis as a line of symmetry ,  so all of the 
m omen t s  with m odd  are equal  to zero. Similarly the K,, , ,  with n odd are 
also equal to zero. The full von Koch  distr ibution is invar iant  under  re/3 
rotat ions.  A little a lgebra  shows that  this implies Ko,2=K2,0 and 
K4,o = K0,4 = 3K2,2. The  pat tern  does not  continue: Ko,6 r K6,0. 

Al though the au thors  cannot  see a me thod  of determining the 
asympto t ic  form of either the k~, ,  or  the K . . . .  it is possible to make  
hypotheses  based on the results of the previous sections and test them 
numerically.  O u r  compute r  resources permit  us to go only as far as 
m + n = 100. We restrict ourselves here to the case m = 0 or n = 0 .  The  
dominan t  factor  in Km,o is of the form a m, where a is the greatest  extent of 
the distr ibution in the x direction, that  is, 1/2. Based on the results f rom the 

Table III. M o m e n t s  of the von Koch Snowf lake  

m, n km,n Km,n 

O, 0 1/3 1 
O, 1 2 x~/27 0 
0, 2 7/135 1/9 
2, 0 1/45 1/9 
0, 3 4 ~3/315 0 
2, 1 4 ,~f3/315 0 
0, 4 35737/3662820 5/252 
2, 2 59/23940 5/756 
4, 0 1201/406980 5/252 
0, 5 2855 ~_3/1098846 0 
2, 3 2687 ~/3/5494230 0 
4, 1 989 ,,/3/1831410 0 
0, 6 19838747/9253504260 13669/3174444 
2, 4 24886319/83281538340 2141/3174444 
4, 2 8304973/27760512780 149/151164 
6, 0 167641/342722380 1409/352716 
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Menger sponge, we would expect a factor of the form m-an 4/2 ~ 3, where 
the In 4/ln 3 is the dimension of the fractal, and the 2 is the embedding 
dimension E. Thus a function 

Kl(m ) =Km, o2mmin 2/ln 3 (5.21) 

is plotted against m. The graph is quite flat, converging to approximately 
0.857, as shown in Fig. 9, indicating that this form is approximately correct. 
Similarly, in the y direction, we might expect a similar form, with a equal 
to l/x//3. This is not the case, and it appears that the correct quantity to 
be plotted is in fact 

K~(n ) = Ko,, , 3n/2n]n 4/ln 3 (5.22) 

which also gives a flat graph, converging to approximately 1.382, as shown 
in Fig. 9. The factor of 2 difference between these two cases is simply a 
numerical observation; it is hoped that further investigation into the 
structure of these moments will shed more light on this interesting factor. 

5.4. Four ie r  T r a n s f o r m  

The presence of rotations makes it difficult to write an explicit expres- 
sion such as Eq. (2.15) for the Fourier transform of the k distribution, T:(k); 
however, there are a few results which can be deduced directly from the 
recursion relation, Eq. (2.14), 

l lei(kx/3+k#../g)~c( k x ky k x ky) = - - -  - 

ky kx 
-[-ei(--kx/3+kyAJ3)~(~'-[-2%//3'2N//3 ~ ) 1  (5.23) 
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'/Z 

Fig. 9. The asymptotic behavior of the moments of the yon Koch distribution. See 
Eqs. (5.21), (5.22). 

822/72/1-2-18 
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A power series expansion for ~ around k = 0 may be obtained by 
expanding the exponential in Eq. (2.13) in its power series to obtain 

rc(kx, ky)= ~ ~ (ikx)m (iky)" kin.,, (5.24) 
m=O n=0 m! n! 

The Fourier transform of the entire distribution R is related to Tc by 
Eq. (5.2). We have evaluated K numerically using these three equations; the 
square of R is shown in Fig. 10, which approximates the diffraction pattern 
through a snowflake-shaped slit. From this figure it is evident that R has 
the same symmetry group as the hexagon (D6) .  

For the fractal distributions in previous sections, which did not have 
transformations involving rotations, showing that the Fourier transform 
did not approach zero as Ikl--, ~ was trivial. In this case, the proof 
requires more work. 

The transformations in Eq. (5.23) are given by a dilation of l/x/3 and 
a rotation of an odd multuple of •/6. (The second transformation also 
involves a reflection which makes no difference here). Thus six points on 
the vertices of a hexagon are mapped to the vertices of a smaller hexagon, 

Fig. 10. The square of the Fourier transform of the von Koch snowflake. Lighter shades 
correspond to larger values, with white denoting all values above 0.007. 
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which is rotated by n/6. The value of ~ at a single point far from the origin 
can thus be evaluated in terms of ~ at only six points, which lie on the 
vertices of a hexagon, and a complicated combination of the exponentials 
in Eq. (5.23). It is not difficult to check that it depends on the values at all 
six of these points. 

The values of k for which both exponentials in _Eq. (5.23) are equal to 
1 lie on a periodic lattice with basis vectors (37~, xf37z) and (-3~z, ~f3~). 
This lattice is invariant under 7r/3 rotations, and also the inverse of the 

t-I 
transformations in Eq. (5.23), that is, L~ . Hence there exist arbitrarily 
large values of [kl for which all the transformations involve exponentials 
equal to 1, until the innermost hexagon of lattice points is reached. Where 
the exponentials are 1, T: is given as the arithmetic mean of two of its values 
at points in the inner hexagon. This means that, for one of the large values 
of IkJ above, ~ is approximately equal to the arithmetic mean of all six of 
its values at the inner hexagon. Numerically, this arithmetic mean is 
-0.066534. Thus 7c does not tend to zero for large IkJ. Similarly, ~" does 
not tend to zero either. 

It is clear that the von Koch snowflake is a very special example; the 
translation vectors t~ which generate the lattice of points must be consis- 
tent with the linear parts of the transformations which determine the points 
at which the Fourier transform is evaluated. It is clear that many self- 
similar fractals do not satisfy the stringent conditions required for the 
Fourier transform to contain peaks at large Ik[. There are, for example, no 
periodic lattices with fivefold symmetry, although this does not preclude 
the possibility of the exponentials in the recursion relation approaching 1 
only in the large-[kJ limit of the iterated transformations. For example, 
there are no periodic lattices invariant under a dilation factor of 
~b = (1 + x//-5)/2, but multiple transformations yield ~b", which is arbitrarily 
close to an integer for all n sufficiently large. 

6. S U M M A R Y  A N D  D I S C U S S I O N  

A number of general statements may be made concerning the analytic 
properties of functions derived from fractal distributions. The self-similarity 
of a charge distribution may be used, together with Mellin transform 
techniques, to find an expansion for the potential near a point in the 
distribution. The potential follows a power law in the distance from the 
distribution, together with small oscillatory terms and a Taylor series. 
The exponent is an effective dimension of the distribution: the Hausdorff 
dimension in the case of a uniform distribution, as in Eq. (5.13), or some 
other effective dimension of a multifractal distribution, as in Eq. (3.14). 
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A simple recursion relation for the moments may be derived. If the 
transformations defining the fractal do not contain rotations, the moments 
may be evaluated directly, otherwise simultaneous linear equations must be 
solved. The asymptotic behavior of the moments is closely related to that 
of the potential close to the distribution, and thus involves the effective 
dimension(s) of the distribution. This connection is difficult to exploit unless 
the fractal has embedding dimension E =  1, as in Eq. (3.46). For more 
complicated cases, it appears that, in addition, E appears in the asymptotic 
behavior of the moments, Eq. (4.7), but is not the only determining factor, 
Eqs. (5.21), (5.22). 

The Fourier transform of a self-similar distribution may be written an 
infinite product of sums of exponentials if the linear parts of all the trans- 
formations are equal, Eq. (2.15). This is a slight generalization of the result 
in ref. 7, although this paper includes some related, but not self-similar 
fractals, which we do not. For large values of k the Fourier transform may 
or may not tend to zero, depending on the transformations defining the 
distribution. A discussion of this point for the case without rotations is 
contained in ref. 7. From our analysis it appears that the von Koch snow- 
flake is a rare example of a fractal defined using rotations for which the 
Fourier transform does not tend to zero for large k. Averaging over k, 
we find that the Fourier transform of the binomial Cantor distribution 
decreases at a rate related to its smallest effective dimension, Eq. (3.54). 
For the case of the Menger sponge this rate depended on other parameters, 
not directly related to the dimension, Eq. (4.15). 

There is clearly much scope for further work. The full structure of 
the moments and Fourier transform of fractals with E >  1 remains to 
be clarified. (17) There are also problems in the potential theory of fractals 
with different boundary conditions, such as fixing the potential on the 
fractal, and solving for the charge distribution. As argued by Evertz and 
Mandelbrot, (3) the charge distribution for this class of problem is multi- 
fractal, but it is not exactly self-similar. 
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